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Flapping dynamics of a flag in a uniform stream
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We consider the flapping stability and response of a thin two-dimensional flag of high
extensional rigidity and low bending rigidity. The three relevant non-dimensional para-
meters governing the problem are the structure-to-fluid mass ratio, µ = ρsh/(ρf L); the
Reynolds number, Re = V L/ν; and the non-dimensional bending rigidity, KB = EI/

(ρf V 2L3). The soft cloth of a flag is represented by very low bending rigidity and the
subsequent dominance of flow-induced tension as the main structural restoring force.
We first perform linear analysis to help understand the relevant mechanisms of the
problem and guide the computational investigation. To study the nonlinear stability
and response, we develop a fluid–structure direct simulation (FSDS) capability,
coupling a direct numerical simulation of the Navier–Stokes equations to a solver for
thin-membrane dynamics of arbitrarily large motion. With the flow grid fitted to the
structural boundary, external forcing to the structure is calculated from the boundary
fluid dynamics. Using a systematic series of FSDS runs, we pursue a detailed analysis
of the response as a function of mass ratio for the case of very low bending rigidity
(KB = 10−4) and relatively high Reynolds number (Re = 103). We discover three dis-
tinct regimes of response as a function of mass ratio µ: (I) a small µ regime of fixed-
point stability; (II) an intermediate µ regime of period-one limit-cycle flapping with
amplitude increasing with increasing µ; and (III) a large µ regime of chaotic flapping.
Parametric stability dependencies predicted by the linear analysis are confirmed by
the nonlinear FSDS, and hysteresis in stability is explained with a nonlinear softening
spring model. The chaotic flapping response shows up as a breaking of the limit
cycle by inclusion of the 3/2 superharmonic. This occurs as the increased flapping
amplitude yields a flapping Strouhal number (St = 2Af/V ) in the neighbourhood
of the natural vortex wake Strouhal number, St � 0.2. The limit-cycle von Kármán
vortex wake transitions in chaos to a wake with clusters of higher intensity vortices.
For the largest mass ratios, strong vortex pairs are distributed away from the wake
centreline during intermittent violent snapping events, characterized by rapid changes
in tension and dynamic buckling.

1. Introduction
The flag flapping problem is of interest not only for its prevalence, but also for

the simplicity of the problem statement and the richness of the behaviour. While
we observe this phenomenon often in our daily lives, recent work suggests possible
application of natural flapping behaviour to the pursuit of turbulence reduction (Shen
et al. 2003; Techet, Hover & Triantafyllou 1997) and energy generation (Allen & Smits
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2001), as well as aiding in efficient propulsive swimming (Liao et al. 2003a, b). The
general problem is one of a thin membrane in an unbounded fluid flow which is
held pinned at the leading edge and is free at the trailing edge. As the flow travels
over the body surface, off the trailing edge, and into the wake, an instability can be
realized which manifests itself as sustained flapping of the body. The system includes
the dynamic effects of the flow over the undulating membrane, vorticity generation
at the surface, vortex shedding at the trailing edge, structural inertia, restoring due
to bending rigidity, and restoring due to the flow-induced variable tension in the
body. In this study, we restrict ourselves to the two-dimensional problem. The three-
dimensional case is more involved but exhibits the salient behaviours and features of
the two-dimensional problem we discuss here (Connell 2006). Our interest is in the
case of very low bending rigidity typical of cloth, where the flag’s structural restoring
force is dominated by flow-induced tension. If we further restrict ourselves to the case
of high extensional rigidity, the system is governed by three relevant non-dimensional
parameters associated with the structure-to-fluid mass ratio, the bending rigidity, and
the Reynolds number, given, respectively, by

µ =
ρsh

ρf L
, KB =

EI

ρf V 2L3
, and Re =

V L

ν
, (1.1)

for a two-dimensional body of length L, mass-per-length ρsh, and bending rigidity
EI , in a fluid flow of density ρf , viscosity ν, and flow speed V . In realistic flag-like
problems, the bending rigidity is very low and the dynamics are primarily governed
by the mass ratio and the Reynolds number.

The present work builds upon earlier studies of passive flapping dynamics, enhanc-
ing the understanding of the coupled physics through a range of flag flapping response
modes. An early study of Paidoussis (1966) treats the problem of the stability and
response of a flexible cylinder in axial flow, both theoretically and experimentally. He
notes the destabilizing effect of increasing the flow velocity through what is essentially
the Kelvin–Helmholtz instability, balanced against the restoring effect of tension and
bending rigidity of the flexible body. Predictions and observation of a streamwise
travelling-wave flapping solution are found, similar to the motion of swimming fish
observed by Gray (1933). Paidoussis emphasizes the importance of the nonlinear
effects neglected in the theoretical model when considering the unstable response of
the experiments. Subsequent work of Triantafyllou (1992) examines the nature of the
travelling-wave linear instability in further detail. Coene (1992) extends the Paidoussis
theoretical analysis to that of a thin membrane. For this case, the contribution of the
flow is different in that the added mass can no longer be considered sectionally with
strip theory, but becomes a function of the mode of oscillation. The case of constant
tension of the membrane is considered, and experiments are performed with paper
strips pulled at both ends. Critical values of the tension, below which flapping is
realized, are found experimentally to be in good agreement with theory. Two important
considerations for the flag flapping problem not incorporated in these studies are the
interaction of the flow wake and the varying tension along the length associated with
the fluid-dynamic forcing.

Including the existence and influence of the flow wake adds considerable complexity
to the theoretical treatment. Such an analysis including the shedding of wake vortices
is presented in Argentina & Mahadevan (2005). Their approach details a method for
including finite-length effects, and an analysis is given for a particular case which
simplifies the formulation. Trends are predicted for the flapping frequency and critical
flow speed above which flapping is realized. In this case the added mass is much smaller
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than the structural mass, the flow speed is much larger than the flapping velocity,
and the bending rigidity dominates the structural restoring force – conditions which
do not obtain for the regime of interest in the present study. The analysis of Moretti
(2003) considers in detail the sources and influence of tension in the body, citing
the original work of Thoma (1939), which highlights the importance of dynamically
induced tension. These papers explain that, during active flapping, the tension induced
by the flapping motion becomes very significant, and Moretti (2004) hypothesizes that
it is this dynamically induced tension which limits the flapping amplitude.

The difficulties and assumptions of theoretical treatment are avoided through
the use of experiments and numerical simulations. The experiment of Zhang et al.
(2000), using a filament in a flowing soap film, allowed for the effects of wake flow and
varying structural tension. Using a film to maintain two-dimensionality, the experiment
observed both stable and unstable responses, depending on the filament length. As the
length was increased, the filament became unstable, displaying a streamwise travelling-
wave response. The flapping amplitude was observed to diminish toward the leading
edge, where the tension due to viscous forcing and gravity was highest. A region
of bistability was observed, where sufficiently large perturbation could transform the
system from a stable to an unstable response.

Two distinct approaches to numerically simulating the Zhang soap film experiments
have been made by Zhu & Peskin (2002; 2003) and Farnell, David & Barton (2004a, b).
The Farnell et al. work treats the filament as a pendulum of many links connected by
springs and dashpots. Such treatment requires tuning of the model, and it is indicated
that further work is required in determining the accuracy of the approach. The Zhu &
Peskin numerical study uses the immersed boundary method to couple a nonlinear
filament with bending and extensional rigidity to a Navier–Stokes solver. The study
replicates the trends found in the experiment. These include the transition to unstable
flapping for longer filaments and the existence of a bistable region. Flow visualization
indicates that the small-scale vortical structures observed in the experiment were not
apparent in the simulations, an anticipated result with the Reynolds number having
been reduced from 20 000 in the experiment to 200 in the simulation. It is noted
that removing the filament mass results in an always stable filament. Beyond this
observation, the variation parameter used for the soap film studies is the dimensional
filament length, which influences the three non-dimensional parameters, µ, Re, and KB .

The experimental investigation of paper flutter in a wind tunnel of Watanabe
et al. (2002) illustrates the importance of this flapping problem to paper moving
through a printing press. Through a series of experiments, the stabilizing effects of
decreasing flow velocity, decreasing length, decreasing mass, and increasing bending
rigidity were presented. Again, a bistable region was discovered in the transition
from stable to unstable flapping modes. Increasing the flow speed from the critical
point, the flapping amplitude and the Strouhal number were found to increase, both
approaching asymptotic values in the established flapping regime. While the Watanabe
et al. experiments were performed in air, the recent work of Shelley, Vandenberghe &
Zhang (2005) details similar experiments performed in a water tunnel. These experi-
ments in water required special treatment to bring the membrane mass up to a
sufficient value to realize flapping. Similar results to those of the air experiments
were found for stability, response, and bistability with changing flow velocity, which
translates to variations in the non-dimensional parameters Re and KB .

In the present work, we consider the two-dimensional flag problem in an unbounded
fluid domain. The effects of Reynolds number, structure-to-fluid mass ratio, and non-
dimensional bending rigidity on the system stability are examined. For the case of
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Figure 1. Depiction of the problem of the flapping two-dimensional flag of length L in
uniform incoming flow V in an unbounded fluid domain. The flag is pinned at the leading
edge and free at the trailing edge.

very low bending rigidity, we study the progression of response in relation to the
system mass ratio to understand the physics related to the range of observed flag
flapping behaviour.

We first perform a linear analysis to show how the relevant non-dimensional
parameters of the system influence the realization of the flapping instability. The
structural tension in this theoretical stability analysis is modelled as a function of
the Reynolds number through boundary layer theory, and no attempt is made to
model the wake effects in the linear analysis as did Argentina & Mahadevan (2005).
To examine the full nonlinear flapping problem, including wake effects and variable
tension in the body, we develop a coupled fluid-structure direct simulation (FSDS)
of the Navier–Stokes equations and geometrically nonlinear structural equations. We
perform a systematic series of FSDS runs to understand the trends of stability and
response for the flag flapping problem. The simulations corroborate the stability
criteria identified in the linear analysis: a destabilizing effect of increasing structure-
to-fluid mass ratio, where a lesser proportion of the inertia is convecting with the
flow as added mass; and a stabilizing effect of higher bending rigidity and lower
Reynolds number, both of which increase the structural restoring force. For the case of
very low bending rigidity and low-to-moderate Reynolds numbers (Re = 100 → 5000)
considered, increasing the mass ratio is found to transition the system through
three distinct response regimes: (I) fixed-point stability, (II) limit-cycle flapping, and
(III) chaotic flapping; each with representative wake characteristics.

Section 2 defines the problem and the relevant parameters, while the approach for
nonlinear simulation is described in § 3. Linear analysis for the fixed-point stability
problem is developed in § 4.1, with simulation results for stability and flapping response
discussed in § 4.2. A summary of the findings is provided in § 5.

2. Problem statement
We consider the problem of a two-dimensional thin membrane, pinned on the lead-

ing edge and free on the trailing edge, excited by a uniform incompressible viscous
inflow in an unbounded domain, shown in figure 1. The body is sufficiently thin so
that the small thickness (and its variation with length) is unimportant to the result.
The structural properties of the membrane in this two-dimensional study are the
length, mass-per-length, bending rigidity, and extensional rigidity. The extensional
rigidity is considered to be very high, and is included in the nonlinear numerical
model as a means of maintaining continuity and transmitting force tangentially, as
detailed in § 3.2.
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The geometrically nonlinear equation of motion for the two-dimensional flag is

ρsh
∂2x
∂t2

− ∂

∂s

(
T (s)

∂x
∂s

)
+ EI

∂4x
∂s4

= Ff , (2.1)

with s as the Lagrangian coordinate along the length, and the body position vector
x fixed at the pinned leading edge. Here, ρs is the structural density, h is the flag
thickness, T (s) is the tension in the body, and EI is the structural bending rigidity.
Fluid coupling comes through the forcing term defined as

Ff = [�τ ]n̂, (2.2)

where n̂ is the upward facing normal and [�τ ] is the difference between the fluid-
dynamic stress tensor at the top and bottom of the body. Elements of the stress tensor
are defined by the fluid dynamics at the body surface as

τij = νρf

(
∂ui

∂ξj

+
∂uj

∂ξi

)
− δijp. (2.3)

Equations (2.2) and (2.3) contain all of the physical influence of the fluid flow on the
flexible structure. This includes viscous damping and boundary layer drag, inertial
added mass effect, and the influence of separation and vortices shedding into the
wake.

The fluid dynamics are obtained as the solution to the incompressible fluid momen-
tum and mass conservation equations, the Navier–Stokes equations, written as

∂v

∂t
+ (v · ∇)v = − 1

ρf

∇p + ν∇2v, (2.4)

∇ · v = 0. (2.5)

The velocity boundary conditions complete the problem specification:

v =
∂x
∂t

on flag boundary, (2.6)

v = V at ∞. (2.7)

It is through this inner boundary condition (2.6) that the structural influence is
imparted to the fluid, so that the flow solution is consistent with the structural motion.
While dynamic continuity between the fluid and structural domains is contained in
(2.1)–(2.3), kinematic continuity between the domains is contained in (2.4)–(2.7). This
set of equations governs the coupled fluid and structural motion of the system depicted
in figure 1.

3. The coupled numerical model: FSDS
We develop a coupled fluid–structure direct simulation (FSDS) method to study

the coupled nonlinear problem. The fluid-dynamic direct simulation (FDS) is a finite-
difference solution to the Navier–Stokes equations solved on a grid fitted to a moving
thin body. Fluid-dynamic forcing on the body surface is calculated and used as input
to a finite-difference structural-dynamic direct simulation (SDS). The structural solver
is geometrically nonlinear and able to take on arbitrary configurations. Both the FDS
and SDS are implicit, requiring iteration between the two for convergence at each
time step.

3.1. The fluid-dynamic numerical model: FDS

Direct solution of the Navier–Stokes equation is carried out using primitive variables
(p, v) on a moving collocated grid. An O-grid is used for discretization, and is shown
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Figure 2. Grid used for FDS with computational (ρ, θ ) and physical (y, z) directions
indicated. Zoomed view of grid clustering at the body and wrapping around the end.

with the computational (ρ, θ) and physical (y, z) coordinate directions indicated in
figure 2. The body thickness is tapered and rounded at the ends. The grid is generated
using the elliptic solution method of Thompson, Thames & Mastin (1977), with the
clustering source terms calculated from an algebraically generated grid around a
straight foil. With coordinate dependencies of y(ρ, θ, τ ), z(ρ, θ, τ ), and t(τ ), the de-
rivatives can be mapped from physical to computational space, utilizing the Jacobian
for spatial derivatives and grid velocities for calculation of the time derivative on a
moving grid.

The mapped derivatives are used in the Navier–Stokes equation, hereafter made
non-dimensional by the body length L, incoming flow V , and fluid density ρf :

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v. (3.1)

The time integration method used is the second-order backwards difference scheme
(BDF2), as discussed in Li & Tang (2001) and Strikwerda (1997). This implicit method
offers stability with second-order accuracy, and gives (3.1) the semi-discrete form

3v n+1 − 4v n + v n−1

2�t
+

((
v n+1 − vn+1

g

)
· ∇

)
v n+1 = −∇pn+1 +

1

Re
∇2v n+1, (3.2)

where vg is the velocity of the moving computational grid. All spatial derivatives
are taken as second-order centred differences, excepting those in the convective term
which use the third-order upwinding scheme of Kawamura & Kuwahara (1984) (see
also Li 1997).

The pressure is found with a Poisson equation obtained with the projection method
of Chorin (1968) (see also Armfield 1991). The equation is formed by taking the
discrete divergence of (3.2) and setting the discrete velocity divergence equal to zero.
Pressure boundary conditions are derived for consistent zero velocity divergence. This
boundary treatment, with the implementation of a solvability condition, couples the
otherwise chessboard-independent grids inherent to the Chorin scheme.

Verification and validation of FDS

For the fluid-dynamics simulation (FDS) portion of the coupled code, we perform
full convergence testing uses the benchmarking problem of a harmonically driven
cylinder, studied experimentally and numerically by Dutsch et al. (1998). We calculate
the drag coefficient cd and added mass coefficient ci for the case of Re= 100 and
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Figure 3. Lift (cl) and drag (cd ) coefficients vs. angle of attack for a NACA0008 at
Re= 2000, for simulations of Kunz & Kroo (2001) (—+—) and the present FDS (× — —).

KC = 5. Using N × N grids of dimension N = (40, 60, 80, 100, 140, 200), second-order
convergence of the forcing error is found as ecd

∼ �x1.65 and eci
∼ �x1.92. Varying the

time step as �t = (0.1, 0.05, 0.025, 0.01, 0.005, 0.0025), second-order convergence of
the error is found as ecd ∼ �t2.21 and ecm ∼ �t1.84. Convergence is also found with
increasing domain size, as the influence of the far-field boundaries is reduced. The
converged values of cd = 2.09 and ci = 1.45 are the same values reported by Dutsch
et al. for their highest-resolution result. Success with this problem indicates dynamic
accuracy of the flow solver in a simulation involving a moving grid.

We further validate the FDS using a more difficult geometry of a foil. The solution
of a fixed NACA0008 foil at a range of angles of attack and Re= 2000 is compared to
the simulations of Kunz & Kroo (2001) in figure 3. The plots of lift coefficient cl and
drag coefficient cd with angle of attack show the results to be consistent to within
2.2 %, and capturing the onset of stall. Similar validation was performed for an
impulsively started thin foil (0.02 thickness ratio), and compare well to the experiments
of Dickinson & Gotz (1993), as detailed in Connell (2006).

3.2. The structural-dynamic numerical model: SDS

A structural solver is developed which allows for arbitrary orientation and con-
figuration of the thin body, and which offers stability through a range of external
forcing scenarios. We are primarily interested in simulating an inextensible body with
no bending rigidity. Physically, this would correspond to a material of infinite modulus
of elasticity (to achieve inextensibility) and infinitesimal thickness (to eliminate
bending stiffness). For a robust capability, able to accommodate loss of positive
tension (see Triantafyllou & Howell 1994), we consider finite physical parameters
of very large modulus and very small thickness, corresponding to a body which is
slightly extensible with very weak bending rigidity.

The equations of motion are derived in Cartesian coordinates using Hamilton’s
principle, linearizing around small body thickness and extensional strain. The final
equations are equivalent to those used for the structural component in Zhu & Peskin
(2002), and permit arbitrary configuration and orientation of the body:

ρh
∂2x
∂t2

− Eh
∂

∂s

[(
1 −

(
∂x
∂s

· ∂x
∂s

)−1/2)
∂x
∂s

]
+

Eh3

12

∂4x
∂s4

= F, (3.3)
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with natural free-end boundary conditions of

−Eh

(
1 −

(
∂x
∂s

· ∂x
∂s

)−1/2 )
∂x
∂s

+
Eh3

12

∂3x
∂s3

= 0, and
∂2x
∂s2

= 0, (3.4)

where s is the Lagrangian coordinate along the length. Non-dimensionalizing by L,
V , and ρf , as with (3.1), we obtain the equation of motion

µ
∂2x
∂t2

− KS

∂

∂s

[(
1 −

(
∂x
∂s

· ∂x
∂s

)−1/2)
∂x
∂s

]
+ KB

∂4x
∂s4

= F, (3.5)

where

µ =
ρsh

ρf L
, KS =

Eh

ρf V 2L
, and KB =

EI

ρf V 2L3
. (3.6)

This structural equation is also solved with an implicit second-order finite-difference
formulation in space and time, so that the semi-discrete equation of motion is

µ
2x n+1 − 5x n + 4x n−1 − x n−2

�t2

− KS

∂

∂s

[(
1 −

(
∂x n+1

∂s
· ∂x n+1

∂s

)−1/2)
∂x n+1

∂s

]
+ KB

∂4x n+1

∂s4
= F n+1. (3.7)

We employ an iterative solver for solution of the nonlinear equation (3.7). When the
forcing term comes from the coupled fluid dynamics it is also a function of x at the
(n + 1)th time step, one that requires solution of the flow through the entire domain.
The requirement for simultaneous solution of the structure and fluid is satisfied by
iterating between the two solvers at any given time step. With sufficient convergence
of both the structural and fluid dynamics, the coupled system is then advanced in
time.

Verification and validation of SDS

For verification and validation of the structural solver, we consider problems of
a body pinned at one end and hanging or swinging under the influence of gravity.
Comparison was made to the Bessel equation solution to the linear problem, and
frequency errors of under 2 % were found for the two lowest modes where nonlinear
effects are minimal (see Connell 2006). The nonlinear problem of a horizontally
pinned cable released at one end was studied experimentally and numerically by Koh,
Zhang & Quek (1999). The time history of the pinned-end tension is shown with that
obtained from the present study in figure 4. The numerical results from the present
and earlier work follow each other closely, and both differ slightly from those obtained
experimentally.

The problem of harmonically forcing a hanging chain horizontally at its attached
end was used to compare simulations to experiment by Howell & Triantafyllou (1993)
and Gobat, Grosenbaugh & Triantafyllou (2002). Simulation accuracy was gauged
by its success in capturing an initial loop-closing event observed experimentally at
time t � 3.4 s. Figure 5 shows the present simulation result with the body closing on
itself at t = 3.48 s. This timing of the event, and the size and location of the loop,
compare very well to the detailed study of Gobat et al. (2002). The plot showing the
entire length of chain displays the very small scale of the loop, and a rigidity ratio of
KS/KB = 4 × 107 was required to obtain this resolution. Such tight loop closing is far
beyond the expected requirements of the coupled fluid-structure solver.
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Figure 4. Time history of the attached-end tension of a horizontally pinned cable under the
influence of gravity released at one end, for the Koh et al. (1999) experiment (——) and
simulation (— —), and the present SDS (– – –).
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Figure 5. Loop-closing event at the free end of a chain hanging under the influence of gravity
and harmonically forced horizontally at the attached end, from SDS simulation of the shaking
chain experiment. The snapshot at right shows the entire length of the chain.

3.3. Coupling the FDS and SDS

The solution of the fluid and structural solvers, with both using implicit formulations,
must be simultaneous. The coupled FSDS solver requires iteration between the
velocity field, pressure field, and structural position, where updating the structural
position requires recalculation of the flow grid. A stability problem is encountered
with this iteratively coupled method when the body mass µ is reduced. As the added
mass becomes the dominant inertial effect, a larger portion of the inertia is represented
on the right-hand side of the structural equation (3.5). The problem is stabilized by
assuming an added mass value m̃a , and subtracting the added mass component from
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the fluid forcing, with the acceleration term on the right-hand side being that from
the previous (m − 1)th iteration. That is,

(µ+m̃a)
∂2x
∂t2

−KS

∂

∂s

[(
1−

(
∂x
∂s

· ∂x
∂s

)−1/2)
∂x
∂s

]
+KB

∂4x
∂s4

= Ff +m̃a

(
∂2x
∂t2

)m−1

. (3.8)

Upon convergence of the system, the m̃a terms on each side of (3.8) cancel, and the
precise choice of the assumed added mass value does not impact the solution. This
procedure is effective in stabilizing the coupled solution, even with vanishing body
mass.

Verification of the coupled FSDS

We perform FSDS on a pinned thin foil with impulsively started cross-flow at
Re= 1000 using two different resolution grids of N =(60 × 120) and N =(100 × 200).
With the relatively high values for the mass ratio (µ = 1) and bending rigidity
(KB =0.1), there is significant energy exchange between the fluid and structure. The
progression of the coupled solution in time is depicted in the series of vorticity plots
of figure 6(a), which show the vortices shedding and interacting with the nonlinear
body motion as it aligns with the flow. A particularly good measure of accuracy
of the coupled simulation is energy conservation, and we plot the energy budget
for the lower- and higher-resolution FSDS in figure 6(b). Significant energy content
appears in all components except the structural extensional mode, indicating the
near-inextensibility. The structural energies and the outer boundary flux (representing
energy input to the system through a pressure gradient) are not significantly influenced
by the grid resolution, while the fluid kinetic energy and fluid dissipation both show
lower values on the lower-resolution grid. This additional energy loss, or numerical
dissipation, is displayed in the curves of total loss. At the end of the simulation, the
low-resolution numerical dissipation is 53 % of the physical viscous dissipation, while
the high-resolution numerical dissipation is 24 % of the viscous dissipation, indicating
improved Reynolds number accuracy. This higher-resolution N =(100 × 200) grid is
used for all the simulations for the present study.

4. Results and discussion
Before studying the nonlinear coupled problem using a systematic series of FSDS

simulations, we first perform a linear analysis of the flapping foil to obtain the linear
stability as a function of the relevant non-dimensional parameters. This analysis
delineates the fundamental physical modes of the problem and offers guidance to
the FSDS numerical study. The FSDS results complete the bigger picture of the full
nonlinear problem, including trends in the system stability and regimes of unstable
response.

We proceed in the framework of the relevant non-dimensional parameters of the
system, given by (1.1). While dimensional physical parameters such as body length or
flow speed influence more than one physical effect, use of non-dimensional parameters
isolates the physical influences to the system, facilitating analysis and interpretation.

4.1. Linear stability analysis

Following the work of Triantafyllou (1992) and Coene (1992), we write the equation
of motion for the foil, considering z to be the displacement from the streamwise y
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Figure 6. FSDS simulation of a flexible body pinned at the leading edge subject to an
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axis, as

ρsh
∂2z

∂t2
− ∂

∂y

(
T

∂z

∂y

)
+ EI

∂4z

∂y4
+ ma

(
∂

∂t
+ V

∂

∂y

)2

z = 0. (4.1)

The only difference between (4.1) and those of Triantafyllou and Coene is that we
have allowed for variation of the tension in the streamwise direction. Unlike the soap
film problem where gravity influences the tension, the present study has only the fluid
forcing contributing to the tension. If we assume the fluid forcing to be that due to a
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Blasius laminar boundary layer, the tension can be written as

T (y) = 1.3ρf V 2LRe−1/2

(
1 −

√
y

L

)
, (4.2)

where

Re =
V L

ν
. (4.3)

In seeking a solution to (4.1) which lends itself to physical interpretation, we avoid
the variable tension expression of (4.2), instead using the maximum value of (4.2)
evaluated at y = 0 as a constant value along the length. Using a constant value for
tension, we revert to the equation used in the previous studies, the notable difference
being the quantifying of the tension in terms of the fluid dynamics. The equation of
motion is now written with the last term expanded as

ρsh
∂2z

∂t2
− 1.3ρf V 2LRe−1/2 ∂2z

∂y2
+ EI

∂4z

∂y4
+ ma

∂2z

∂t2
+ 2maV

∂2z

∂y∂t
+ maV

2 ∂2z

∂y2
= 0. (4.4)

The three expanded final terms represent the fluid-dynamic effects of inertial added
mass, Coriolis force, and centrifugal force, respectively (see Triantafyllou 1992).
Grouping the terms, we have

(ρsh + ma)
∂2z

∂t2
+

(
maV

2 − 1.3ρf V 2LRe−1/2
) ∂2z

∂y2
+ EI

∂4z

∂y4
+ 2maV

∂2z

∂y∂t
= 0. (4.5)

In the second term, the countering effects of the Kelvin–Helmholtz instability and
the restoring action of the drag-induced tension can be seen. The variables (y, z, t) of
the equation of motion are now non-dimensionalized by the length L and free-stream
velocity V , obtaining

(ρsh + ma)
V 2

L

∂2z

∂t2
+

(
maV

2 − 1.3ρf V 2LRe−1/2
) 1

L

∂2z

∂y2
+ EI

1

L3

∂4z

∂y4

+ 2maV
V

L

∂2z

∂y∂t
= 0. (4.6)

Dividing through by V 2ρf , we obtain the final form of the non-dimensional equation:

(µ + cm)
∂2z

∂t2
+

(
cm − 1.3Re−1/2

) ∂2z

∂y2
+ KB

∂4z

∂y4
+ 2cm

∂2z

∂y∂t
= 0, (4.7)

where cm = ma/(ρf L).
We assume a travelling-wave mode, z =A ei(ky−ωt), where k and ω are the non-

dimensional wavenumber and frequency. The equation of motion then yields the
dispersion relation:

(µ + cm)ω2 +
(
cm − 1.3Re−1/2

)
k2 − KBk4 − 2cmωk = 0. (4.8)

Solving for the frequency, we have

ω =
cmk

µ + cm

± 1

µ + cm

√
c2
mk2 − (µ + cm)

(
cmk2 − 1.3Re−1/2k2 − KBk4

)

=
cmk

µ + cm

± k

µ + cm

√
−µcm + (µ + cm)

(
1.3Re−1/2 + KBk2

)
. (4.9)
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Unstable flapping modes are realized when the argument of the radical in (4.9) is
negative, i.e.

µcm

µ + cm

> 1.3Re−1/2 + KBk2. (4.10)

As expected, we see from (4.9) that the tension and bending rigidity are stabilizing
effects, while the centrifugal force is the destabilizing effect of the Kelvin–Helmholtz
instability. All three of these effects are scaled by the total inertia, the sum of
structural mass and added mass. An additional stabilizing effect comes from the
Coriolis force (the first term in the radical), which scales only with the added mass.
As the expression in the radical can never become negative when µ = 0, the system
cannot realize unstable flapping without structural mass. Zhu & Peskin (2002) indicate
that the periodic energy exchange between potential energy and kinetic energy cannot
be sustained unless the structure itself can take on kinetic energy, and that having
the kinetic energy in terms of added mass alone is not sufficient. The present analysis
shows why that is the case. The fluid added mass is advected with the flow velocity,
and, thus, influences the system differently from the structural mass. It is, in fact, the
added mass which brings about the flapping instability, but this instability cannot be
realized on a massless body.

From potential flow solution, the added mass coefficient for an infinite waving plate
is given by (Coene 1992):

cm =
ma

ρf L
=

2

k
. (4.11)

The added mass is thus a function of the non-dimensional wavenumber and dependent
on the flapping mode. This is an important distinction from the cable problem, in
which the added mass is estimated from the cable cross-section. The criterion for
existence of flapping in the flag can now be rewritten in terms of the mode as

µ
1
2
µk + 1

> 1.3Re−1/2 + KBk2. (4.12)

Equation (4.12) shows the stabilizing effect of decreasing mass ratio (the left-hand
side term decreases with decreasing µ), decreasing Reynolds number, and increasing
bending rigidity. Recall that Zhang et al. (2000) and Zhu & Peskin (2002) found that
increasing the length is destabilizing, an adjustment which increases Re and decreases
KB . These changes to Re and KB are both destabilizing, and the observed trend comes
from the combination of the effects.

Rearranging (4.12), we obtain the critical mass ratio

µ =
1.3Re−1/2 + KBk2

1 − 0.65Re−1/2k − 0.5KBk3
, (4.13)

above which flapping will be realized. In cases where the mass ratio is small compared
to the added mass, we find from (4.10) that this critical mass ratio reduces to

µ = 1.3Re−1/2 + KBk2. (4.14)

When bending rigidity can be neglected, the existence of flapping becomes a function
of only the two parameters µ and Re, and flapping occurs above the critical mass
ratio given by

µ = 1.3Re−1/2. (4.15)
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Figure 7. Critical mass ratio for flapping as a function of bending rigidity KB for
Re= 100 (——), Re= 1000 (— —), Re= 5000 (– – –), using (4.13) for the k =2π mode.

A plot of the stability relation (4.13) is shown in figure 7, depicting the relationship
between the critical mass ratio µ and bending rigidity KB for the k =2π mode at
Re= 100, 1000, 5000. The plot shows the increased stability with lower Reynolds
number and higher bending rigidity, with the intercepts at zero KB representing the
restoring influence of the viscous tension.

The linear analysis performed above would be more physically accurate if it were
to include varying tension along the body, as well as the effect of global lift. A
pin-ended thin body at an angle of attack will experience lift which tends toward
flow alignment. A method for including this lift effect is laid out in the analysis of
Argentina & Mahadevan (2005), but their approach has not yet been applied to the
regime of interest in the present study. Rather than refining the linear analysis further,
we continue the study using direct FSDS simulations which include the global lift
wake effects and variable tension in the body.

4.2. Results using fluid-structure direct simulations (FSDS)

We use FSDS to investigate the fully nonlinear coupled dynamics of the flag flapping
problem. Our objective is to elucidate the behaviour of the overall flapping dynamics
and its dependence on the relevant non-dimensional parameters. Our regime of interest
is in the limit of low bending rigidity (as would be the case of a cloth flag), where
the viscous tension dominates the restoring force. As noted in § 3.2, a finite value of
bending rigidity must be used to ensure robustness of the structural numerical model,
and a very low value of bending rigidity of KB =0.0001 is used in our simulations
(the results are not sensitive to variation of KB at this low value). In addition, we
maintain essential inextensibility of the structure using KS = 10.

Simulations are initiated with the body straight and at an angle of attack to the
flow such that the initial non-dimensional tail amplitude is A0 = 0.1. The initial flow
condition is of a steady uniform flow with a small gradient buffer zone around the
body used to minimize transients. As the simulation proceeds the body is initially
displaced by the fluid-dynamic forcing toward alignment with the incoming flow, and
it either settles to a stable-straight configuration, or experiences sustained flapping.
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Figure 8. Time history of cross-stream tail displacement for regime (I) fixed-point stability
with µ= 0.025 (— —); regime (II) limit-cycle flapping with µ= 0.1 (——); and regime (III)
chaotic flapping with µ= 0.2 (– – –), with Re= 1000 and KB = 0.0001.

We identify three distinct regimes of response (dependent on the value of the mass
ratio µ): (I) fixed-point stability; (II) limit-cycle flapping; and (III) chaotic flapping.
The differences in the response among the three regimes can be seen in figure 8,
which plots the time history of the cross-stream displacement of the trailing edge
or tail for one case from each response regime. In regime (I) the body settles to
the steady straight configuration with no cross-stream displacement of the trailing
edge, while in regime (II) the response settles to a period-one limit-cycle oscillation
of constant frequency and amplitude. In regime (III) the trailing edge displacement
exhibits sustained non-periodic behaviour characteristic of chaos.

For the case of KB =0.0001 and Re = 1000, we present in figure 9 the results from
a series of simulations through a range of mass ratios of values of µ between 0.025
and 0.3, covering the three response regimes we mentioned. For each mass ratio value,
we present four plots: a time history of the two-dimensional tail position for twenty
non-dimensional time units; a phase plot of the cross-stream tail displacement against
the cross-stream tail velocity; vorticity contours of the flapping wake for the fully
developed flow; and a frequency plot displaying the normalized power spectrum for
both the cross-stream tail displacement and the cross-stream flow velocity at a point
two body lengths downstream of the equilibrium tail position.

For the regime (I) response for the value of µ = 0.025 (figure 9a), the phase plot
spirals in to a point, corresponding to the steady straight configuration, and the
vortex wake represents a steady velocity-deficit wake. For the regime (II) response for
µ = 0.05 (figure 9b), the phase plot spirals to a limit-cycle trajectory, and the power
spectrum exhibits a distinct frequency peak for the tail flapping. The corresponding
limit-cycle vortex wake is the alternating vortex pattern of a von Kármán vortex
street. The amplitude of the tail flapping and width of the vortex street increase
with µ in regime (II) (figures 9b–9d), and the phase plane trajectories become larger
while shifting slightly down in frequency. For µ = 0.125 and higher (figures 9e–9j ),
the system enters regime (III), where the plot in the phase plane does not trend to a
specific trajectory, the vortex wake becomes irregular, and multiple frequency peaks
are seen in the power spectrum.
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Figure 9. For caption see p. 52.
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Trends of the response as a function of mass ratio µ are shown in figure 10.
These include the tail amplitude taken as an average of the extrema, the value of
the dominant frequency from the power spectra, the Strouhal number St = f 2A/V ,
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Figure 9. For caption see p. 52.

and the largest Lyapunov exponent calculated using the method of Wolf et al. (1985).
If d measures the distance between two nearly identical states of the motion in the
n-dimensional phase space, the largest Lyapunov exponent measuring the divergence
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of nearby trajectories is estimated from the evolution of this distance, d(t), by:

d(t) = d(t0) eλ(t−t0). (4.16)

The value for d is approximated using the time history of the cross-stream tail displace-
ment, and modelling the physics as a ten-dimensional system using the time delay
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Figure 9. Time history of cross-stream (——) and streamwise (– – –) tail position; phase plot of
cross-stream displacement and velocity; vorticity contours of the wake for fully developed flow;
and frequency power spectrum of cross-stream displacement (——) and cross-stream velocity
at the wake centreline 2L downstream from the equilibrium tail position (· · ·). Plotted for
mass ratios of (a) µ= 0.025, (b) µ= 0.05, (c) µ= 0.075, (d) µ= 0.1, (e) µ= 0.125, (f ) µ= 0.15,
(g) µ= 0.175, (h) µ= 0.2, (i) µ= 0.25, and (j ) µ= 0.3, with Re= 1000 and KB = 0.0001.
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Figure 10. Flapping amplitude, frequency, Strouhal number, and largest Lyapunov exponent
as a function of the mass ratio. All values are taken from the cross-stream tail displacement
time series of figure 9, with Re =1000 and KB = 0.0001.

technique of Wolf et al. A negative value of λ indicates convergence, and positive
value divergence, of nearly identical initial states.

We see in figure 10 that the flapping amplitude initially increases with mass ratio
away from the critical point, levelling out at A � 0.15; similar to the trend found
away from stability in Watanabe et al. (2002). As the dominant frequency is reduced
only slightly with increasing mass ratio, the Strouhal number follows a trend similar
to the amplitude, levelling to a value between St =0.2 and St = 0.3. The Lyapunov
exponent, initially negative for the regime (I) point of µ = 0.025, plateaus to zero for
the regime (II) range of µ = 0.05 → 0.1, and takes on increasing positive values in
regime (III) for µ = 0.125 and above.

In the following, we discuss details of the fundamental mechanisms associated with
this flapping response and regime transition. We relate the fixed-point stability to
the linear analysis of § 4.1 and consider the bistable phenomenon observed in prior
studies. We also examine the features of the two unsteady flapping regimes and the
mechanics of the transition from limit-cycle to chaotic flapping.

4.2.1. Fixed-point stability

The differences in initial evolution between the fixed-point stable mode and the
flapping modes are shown in figure 11. The figure displays the body response at
non-dimensional time intervals of 0.4 from t = 0 → 2, as well as a vorticity contour
plot at t = 10, for a case of fixed-point stability in figure 11(a) and a case of limit-cycle
flapping in figure 11(b). The settling of the body into the flow-aligned configuration
can be seen in the stable case, while continued oscillation around this configuration
can be seen in the flapping case. The vorticity plot at t = 10 in the stable case indicates
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Figure 11. Body response at non-dimensional time intervals of 0.4 from t = 0 → 2 and vorticity
plot at t = 10 for (a) a fixed-point stable and (b) a flapping unstable case. Dashed lines
indicate negative vorticity. Simulations for Re =1000 and KB = 0.0001 with (a) µ= 0.025 and
(b) µ= 0.1.

a steady symmetric velocity-deficit wake, in contrast to the the unsteady vortex wake
of the flapping case. It is this difference between sustained steady versus sustained
unsteady evolution which defines whether the FSDS simulates a stable fixed point or
an unstable flapping system.

A plot showing the FSDS flapping stability limit in µ−Re space for the low bending
rigidity of KB =0.0001 is given in figure 12(a). The stability limit of (4.15) is also
plotted, showing good comparison between the two for the critical mass ratio. It is
not surprising that the proportionality of (4.15) holds for stability. In the case of very
low bending rigidity, the only two relevant parameters are the mass ratio µ and the
Reynolds number Re. In seeking some natural relationship between these parameters,
a new mass ratio can be considered which is scaled to the Blasius boundary layer
thickness rather than the body length:

µ̃ =
ρh

ρf LRe−1/2
= µRe1/2. (4.17)

This modified mass ratio is the logical choice for a critical mass ratio which has
Reynolds number dependence, and the numerical results of figure 12(a) confirm
µ̃ =1.3 to be the critical value for the onset of flapping.

We now consider the effect of (small) bending rigidity, which we have predicted in
(4.12) to be a function of the non-dimensional wavenumber. Considering k = 2π, the
wavelength being found close to the body length in Zhang et al. (2000), Watanabe
et al. (2002), and the present simulations, we find the critical mass ratio for stability
transition with bending rigidity to be predicted by

µcrit = 1.3Re−1/2 + KB4π2, (4.18)

as plotted in figure 12(a). The very small difference in the stability curves excluding
and including bending rigidity of figure 12(a) indicates that the bending rigidity at the
low value of KB = 0.0001 has little influence on the stability. For the fixed Reynolds
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Figure 12. FSDS results for the critical mass ratio (×), above which unstable flapping is
realized. (a) For KB = 0.0001 and a range of Reynolds numbers, plotted with (4.15) (– – –) and
(4.18) (— —). (b) For Re= 1000 and a range of bending rigidities, plotted with (4.18) (— —).

number Re = 1000, we plot FSDS stability data for increasing bending rigidity in
figure 12(b). The plot shows that the critical mass ratio given by (4.18) continues to
be a good prediction for two orders of magnitude of higher rigidity.

Experimental data for stability transition from Watanabe et al. (2002) at
Re ∼ 100 000 and from Shelley et al. (2005) at Re ∼ 50 000 were put in terms of KB and
µ for comparison to the present FSDS. We plot these experimental data with the
FSDS data at Re = 1000 in figure 13. The trend of critical mass ratio with bending
rigidity from FSDS is shown to follow that of the experimental data, but with a
shift downward. As the prediction of (4.18) is for a higher critical mass ratio for
these lower-Reynolds-number simulations, we look to the physics not modelled in the
linear analysis for an explanation. The wake dynamics, which are not considered in
the linear analysis, will be altered as the rate of dissipation of the shed vorticity will
be less for the higher Reynolds numbers. Additionally, smaller-scale vortex structures
will form at the higher Reynolds numbers. This effect was observed in the experiments
of Zhang et al. (2000) at Re =20 000, but was not in the equivalent simulations of
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Figure 13. Mass ratio above which flapping is realized for a range of bending rigidities.
Experimental results from Watanabe et al. (2002) (∗) at Re ∼ 100 000, from Shelley et al.
(2005) (�) at Re ∼ 50 000, and FSDS results (×) at Re= 1000.

Zhu & Peskin (2002) at Re = 200. Zhang et al. displays the periodic shedding of small-
scale vortices in the wake while the body is in a non-flapping state. Such small-scale
periodic shedding, which relieves the wake instability without body flapping, could
account for the higher critical mass ratios of Re ∼ 105 over Re ∼ 103.

The influence of the relevant non-dimensional parameters on the physical effects
relating to stability of the system are well predicted by the linear analysis of § 4.1.
The importance of the mass ratio on the appearance of the flapping instability is
displayed. The question addressed in Shelley et al. (2005) of whether flapping will
happen in the dense medium of water, is really just one of whether a sufficiently
dense flexible material exists to obtain the necessary mass ratios. Varying the non-
dimensional parameters, as we do in the present study, has a direct influence on the
physical effects of the problem given by (4.7).

4.2.2. Subcritical bifurcation

The experiments of Zhang et al. (2000), Watanabe et al. (2002), and Shelley et al.
(2005) at Re ∼ 104–105 all observe subcritical bifurcation, a significant region of bista-
bility where stable straight and unstable flapping modes can both be realized depend-
ing on the initial conditions. The phenomenon is also observed in the low-Reynolds-
number numerical simulations of Zhu & Peskin (2002). For FSDS simulations at
Re= 1000, we observe no significant region of bistability for KB = 0.0001, while we do
observe bistability for KB = 0.001. For µ = 0.145 we observe convergence to a sus-
tained limit-cycle flapping state with amplitude A= 0.05 when the simulation is initia-
ted with a tail displacement of A0 = 0.25. However, when the simulation is initiated
with a tail displacement of A0 = 0.001, the body maintains this straight configuration,
with no tendency to the flapping limit-cycle. Plots of the body position through several
flapping cycles at t ∼ 40 are shown in figure 14 for both the flapping and stable cases.

A common model to describe hysteresis in response is the Duffing equation, a
forced mass–spring–dashpot system where the spring is nonlinear:

xtt + bxt + k(1 − γ x2)x = F cos(ωt). (4.19)
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Figure 14. Body displacement through several flapping cycles at t ∼ 40 with KB = 0.001,
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Figure 15. Time history of tension and body curvature at s =0.72 for KB =0.001, Re= 1000,
and µ= 0.145, for the flapping case of A0 = 0.25. (a) Measured tension (——), plotted with(
∂2z/∂y2

)2
(· · ·). (b) Measured tension (——), plotted with T̃ (· · ·) of (4.21), using T = 0.11 and

γ = 0.32.

For positive γ , the spring is softening, and amplitude hysteresis can be realized
for forcing frequencies less than the natural frequency (see e.g. Drazin 1992). The
analogous nonlinear restoring term for our flag analysis of § 4.1 is

−T

[
1 − γ

(
∂2z

∂y2

)2]
∂2z

∂y2
, (4.20)

with a positive value of γ again indicating a softening spring. Defining T̃ as

T̃ = T

[
1 − γ

(
∂2z

∂y2

)2]
, (4.21)

we consider this as a model for the measured value of the tension for the flapping
case of KB = 0.001 and µ = 0.145. We plot together in figure 15(a) the FSDS time
history of measured tension and (∂2z/∂y2)2, evaluated at s =0.72, the position which
experiences maximum curvature. The opposite phase of the two plots indicates that
the tension decreases as the body curvature increases, and that γ has a positive
value. We find a fit of T̃ to the measured tension at s = 0.72 using T = 0.11 and
γ = 0.32, as shown in the plot of figure 15(b). The flapping flag thus acts in the same
manner as a softening spring in the Duffing equation, explaining the existence of
hysteretic behaviour. While the higher-Reynolds-number experiments exhibit a much
more significant bistable region than the present work, they also have considerably
larger onset response amplitudes. The Duffing model predicts the existence and size
of the hysteresis region to be similarly tied to the response amplitude through the
magnitude of the external forcing.
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Figure 16. Time sequence of body position and associated vorticity contours for the
response at µ= 0.1 with Re =1000 and KB = 0.0001. Dashed lines indicate negative vorticity.

4.2.3. Limit-cycle flapping

The limit-cycle flapping of regime (II) is marked by the convergence of the flapping
to a single-frequency oscillation which exactly repeats itself. The corresponding phase
plots in figures 9(b)–(9d) trace out a single-loop closed line when the flapping is
converged. A sequence of plots for the regime (II) case of µ = 0.1, showing the body
flapping and contours of vorticity in the fluid, is given in figure 16. The response
is of a travelling wave of increasing amplitude from leading edge to trailing edge,
as was observed in previous studies. The strong vorticity spinning off the tail when
it is at maximum displacement is shed as a discrete vortex in the wake as the tail
sweeps back through the zero point. This process is repeated in symmetry as the
tail passes through maximum displacement in the opposite direction. A von Kármán
vortex street, consisting of a continuous series of alternately signed vortices, is the
resulting wake. The wake plots of figure 9 show that for increasing mass ratio in the
limit-cycle regime, these wake vortices become elongated in the cross-stream direction
as the Strouhal number increases.

As we are looking at a limit of very low bending rigidity and very high extensional
rigidity, there is limited participation of structural potential energy in the energy
budget. Thus, the oscillation consists primarily of an exchange of energy between
the total kinetic energy (fluid and structure) and the fluid potential energy in the
form of the pressure gradient driving the flow. To examine this, we decompose the
kinetic and potential energies to isolate the oscillating components. The oscillating
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Figure 17. Time history of the oscillating part of the energy components for µ= 0.1 with
Re =1000 and KB = 0.0001, from t =16 → 20. (a) Plot of fluid-potential (——), fluid-kinetic
(— —), structural-kinetic (– – –), structural-bending potential (· · · · · ·), and structural-stretching
potential (—·—) energies. (b) Plot of fluid-potential (——), and total kinetic (— —) energies.

energy components for the µ = 0.1 case are plotted in figure 17(a) from t = 16 → 20,
near limit-cycle convergence. The plot shows very little participation of the structural
potential energy, with the majority of the energy exchange being between the fluid-
potential energy and the fluid- and structural-kinetic energy. The sum of the kinetic
energies is plotted with the fluid potential energy in figure 17(b), showing the near
balance in the magnitude of the oscillation. The minimal participation of the structural
potential energies is a reflection of the bending and extensional rigidities approaching
their infinitesimal and infinite limits, respectively, where the actual values of these
parameters do not significantly influence the system evolution.

4.2.4. Transition to chaos

Figure 9 reveals that the period-one limit-cycle flapping is broken up as the mass
ratio goes to µ = 0.125 and higher. We see from figure 10 that this corresponds to a
Strouhal number of St = 0.23. This corresponds to the natural frequency of the fluid
dynamics defined by a universal Strouhal number of St =2Af/V � 0.2 (e.g. Sarpkaya
1979). Thus, the transition to chaos occurs when the flag flapping frequency is in the
neighbourhood of the natural wake frequency. Changes in the behaviour of nonlinear
systems near resonance overlap is a common phenomenon (e.g. Olson & Olsson 1991),
and an example close to the present context is the distinct nonlinear behaviour of
vortex-induced vibration of flexible cylinders when the structural natural frequency
approaches the wake frequency (Sarpkaya 1979; Williamson & Govardhan 2004).

A common path in the the transition from a period-one limit cycle to chaos in
nonlinear systems is successive period doubling (e.g. Procaccia 1988; Olson & Olsson
1991), which would initially show up as a signal at 1/2 of the dominant limit-cycle
frequency. What we observe, however, at µ = 0.125 and µ =0.15, is the appearance of
a second significant frequency component with a value of 3/2 that of the dominant
frequency. The signal is period-two periodic but without a significant component at
the period-two frequency (as sin((2π/T )t) + sin((3π/T )t) is periodic in 2T ). As soon
as the limit cycle is broken, for µ > 0.1, the largest Lyapunov exponent takes on a
positive value. This indicates transition from a period-one limit cycle to a chaotic
system directly or in a very narrow transition region.

Defining the dominant limit-cycle frequency as ωL, the appearance of the second
frequency component at 3ωL/2 suggests a nonlinear combination of the dominant
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Figure 18. Time sequence of body position and associated vorticity contours for the response
at µ= 0.15 with Re= 1000 and KB = 0.0001. Dashed lines indicate negative vorticity. The final
frame is an expanded view using higher-resolution vorticity contours.

frequency with the period-doubled frequency of ωL/2. A constraint on the realization
of the ωL/2 subharmonic could be effecting an immediate transfer of that energy
to the 3ωL/2 component. It has been well established that there exist specific wake
modes which represent stable patterns of vortex distribution into the wake. These are
covered in detail in Williamson & Roshko (1988), where the specific case of the ωL/2
subharmonic mode is addressed, and it is argued that lack of symmetry precludes it
from being a natural mode.

With all of the cases for µ > 0.1, with the 3ωL/2 superharmonic being Lyapunov
unstable, the system tends to this chaotic attractor. We now consider the vortex wake
associated with this mode. The case for µ = 0.15, with the strong superharmonic,
is examined between the period-two cycle of t = 4.9 → 7.3. The three peaks through
the two-cycle can be seen in the µ = 0.15 time series plot, along with a triple-loop
in the corresponding phase plot. Figure 18 gives a sequence of plots showing the
body flapping and vorticity contours. While the vortex pattern is not symmetric, it
is notable that the hesitation, or small tail wiggle, at t = 6.5 creates a dead zone in
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Figure 19. The upper plots are the time history of cross-stream tail displacement for the rigid
foil forced in (a) the 3/2 superharmonic mode A sin(ωt) + 0.5A sin(1.5ωt) and (b) the 1/2
subharmonic mode A sin(ωt) + 0.5A sin(0.5ωt). The lower plots are the corresponding vortex
wake at t = 10, with dashed lines representing negative vorticity.

the vortex wake. The result is a separation between vortex clusters in the wake, a
phenomenon that can be seen in the expanded view of the final frame in figure 18.
Flapping with the dominant frequency and ωL/2 subharmonic would have a more
even distribution of the vortices in an asymmetric wake, and the system avoids such
a mode.

The differences between the wakes with the 3ωL/2 harmonic versus the ωL/2
harmonic are examined by forcing the body to oscillate (as a straight rigid foil) in
these two modes. The signals used are A sin(ωt) + 0.5A sin(1.5ωt) and A sin(ωt) +
0.5A sin(0.5ωt). The time history of the tail displacement and the vortex wake at the
end of the simulation, at t =10, are given in figure 19. The plot of the 3/2 super-
harmonic mode shows vortex clustering in the wake. A series of three strong vortices
(positive-negative-positive) is shed in a diagonal formation, separated by a region
of weaker negative vorticity. The 1/2 subharmonic mode, on the other hand, shows
evenly spaced alternating vortices with three shed in the upper part of the wake
followed by one shed in the lower part of the wake. While the construction of these
forced 3/2 superharmonic and 1/2 subharmonic modes is somewhat arbitrary, they
do display the anticipated differences. The indication is that wake clustering is the pre-
ferred mode to the asymmetric evenly spaced pattern, and thus the period-doubled
energy of the flapping flag feeds into the 3/2 superharmonic.

4.2.5. Snapping

As we see in the the power spectrum plots of figures 9(g)–9(j ), mass ratio values of
µ = 0.175 and above result in broadband responses. Associated with this are further
increases in the Lyapunov exponent, and a noticeably less regular time series and phase
plot. The time series for these larger values of mass ratio indicate intermittent large
and violent (indicated by the rapid change in direction) snapping events interspersed
among smaller oscillations. This type of chaotic behaviour associated with snapping
has been described in other contexts, for example, in the case of a moored near-surface
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Mass ratio, µ Number of snapping events Lyapunov exponent, λ Regime

0.1 0 0.07 (II)
0.125 0 0.18 (III)
0.15 0 0.42 (III)
0.175 1 0.76 (III)
0.2 2 1.12 (III)
0.25 4 1.09 (III)
0.3 6 1.81 (III)

Table 1. Number of snapping events for each mass ratio from t = 0 → 20, listed with the
largest Lyapunov exponent and the identified motion regime, for Re= 1000 and KB = 0.0001.

body (Zhu et al. 1999). It is also commonly observed in everyday chaotic flapping of
flag-like bodies.

‘Snapping’ connotes a rapid acceleration, and, for the purpose of this study, we
define a snapping event as a spike in the magnitude of the trailing edge acceleration
which exceeds 30V 2/L. Using this definition, the number of snapping events over
a simulation time of 20 convective units is given in table 1 for the mass ratios
µ =0.1 → 0.3, with Re= 1000 and KB = 0.0001. From the data, we see there is absence
of snapping in the limit-cycle regime and for low mass ratio (µ � 0.15) cases of regime
(III). Beyond the threshold value of µ ≈ 0.15, the frequency of snapping increases
appreciably with increasing µ, as does the largest Lyapunov exponent.

The kinematics, dynamics, and flow vorticity associated with snapping and recovery
is elucidated by examining in detail a single snapping event. The time history of the
body drag for the chaotic case of µ = 0.3 is given in figure 20(a), displaying a
number of strong peaks in the drag force which correspond to snapping events. As
an illustration, we consider the event occurring at t � 18 and thus focus on the
dynamics of the system encompassing this event from t =17 → 19. The fluid-dynamic
drag effect to the body is plotted in figure 20(b), the kinematics of the body is
displayed in the series of displacement plots of figure 21, and the vorticity evolution
in the near wake is plotted in figure 22. We examine points in time corresponding to
different stages in the evolution of the snapping event: time A at t = 17.6, just prior
to snapping; time B at t = 17.9, at the end of snap-through; time C at t = 18.2, during
recoil; and time D at t =18.5, at the completion of the snapping event.

The plots of the body displacement show a large wave travelling down the body,
creating a hook in the tail at time A. Associated with this hook at the tail, a strong
positive vortex begins to develop at the underside of the body. After time A the tail
begins to snap, and there is a rapid increase in the drag on the body which peaks
during the snap-through, just prior to time B . The vorticity plot at time B shows that
the strong positive vortex that has developed on the underside of the body is shed
as a very strong vortex displaced far from the wake centreline. While this positive
vortex in the lower half of the wake is a drag vortex, the subsequent upsweep of the
tail between times B and C creates a negative vortex in the lower half of the wake,
which is associated with thrust. The drag history reflects this generation of thrust,
with a minimum negative value to the drag at time C.

The loss of tension in the body associated with the thrust at time C marks the
initiation of a dynamic buckling of the body. Such buckling is seen in the displacement
plots beginning, at time C, as a spontaneous appearance of a high wavenumber mode
shape which is essentially stationary for a short period of time, before rolling out to
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Figure 20. Time history of the drag for µ= 0.3 with Re = 1000 and KB = 0.0001, as measured
by the total fluid-dynamic forcing on the body in the streamwise direction. (a) Drag history
for the entire simulation, and (b) drag history showing detail of the snapping event at t � 18
with time points A, B , C, and D indicated.
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indicate negative vorticity.

the tail as a travelling wave beginning at time D. The rapid change in body tension,
loss of positive tension, and associated high mode buckling are characteristic of the
cable snapping problem, as described in Zhu et al. (1999).

Time D represents the completion of the snapping event, as the fluid-dynamic
drag returns to a consistent positive value and the body displacement no longer
exhibits dynamic buckling. Thus the vortex wake at D provides the completed picture
of a wake associated with a snapping event. With the strong positive and negative
vortices being shed in the lower half of the wake, there is a resultant vortex dipole
displaced well below the wake centreline which continues to migrate downward.
Thus the violent snapping events in the chaotic regime are characterized by the
associated rapid variation in the fluid-dynamic forcing and internal tension, as well
as distribution of high-strength vortices away from the wake centreline.

4.2.6. Regime map

The stability and response results for the low bending rigidity case we consider
can be summarized in the diagram of figure 23 on the Re − µ plane. While we
have considered a large number of mass ratio cases for the detailed investigation at
Re= 1000, we performed select runs at higher and lower Reynolds numbers that help
complete the picture of the trends in response transition. The figure shows the three
response regimes of (I) fixed-point stability, (II) limit-cycle flapping, and (III) chaotic
flapping. The curve of transition from stable to limit-cycle response is plotted as µcrit

from (4.18). For transition to chaos, we find that a reasonable fit of the critical mass
ratio values for that transition is given by

µchaos = 2.5µcrit = 3.25Re−1/2 + KB10π2. (4.22)

These transition curves of (4.18) and (4.22) fit the data well for all but the lowest
Reynolds number, Re = 100, where the critical mass ratio for transition to limit-cycle
flapping is underpredicted, and no chaotic response was found with FSDS up through
µ =0.5. The changes associated with regime transition with increasing mass ratio are
indicated in figure 23, including the vortex wake patterns and value of the largest
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Figure 23. Bifurcation diagram for KB = 0.0001 shows the fixed-point stability limit given by
(4.18) (— —), and the curve indicating transition from limit cycle to chaotic response given by
(4.22) (· · · · · ·); with FSDS data indicating the response regime as (I) fixed-point stability (+);
(II) limit-cycle flapping (	); or (III) chaotic flapping (∗). Wake patterns and the sign of the
largest Lyapunov exponent are indicated for each response regime.

Lyapunov exponent. As the mass ratio is increased, the velocity-deficit wake of the
fixed point becomes a limit-cycle alternating vortex pattern of the von Kármán wake.
Increasing the mass ratio further, into the chaotic regime, the wake is characterized by
non-periodic vortex clustering. The value of the largest Lyapunov exponent indicates
the response regime: negative for stable fixed point, zero for limit cycle, and positive
for chaotic flapping.

5. Conclusions
We consider the problem of the flapping motion of a thin flexible body in a

uniform flow. For low extensibility and bending stiffness of the body, the problem is
controlled by the non-dimensional parameters of Reynolds number Re = V L/ν and
mass ratio µ = ρsh/(ρf L). A linear analysis indicates the destabilizing effect of higher
mass ratio and Reynolds number (and the stabilizing effect of higher bending rigidity
KB = EI/(ρf V 2L3)).

We develop a direct simulation of the fully nonlinear coupled fluid-structure
problem. The predictions of the linear stability analysis are confirmed by our direct
numerical simulations and we suggest (4.18) as a good prediction of the critical mass
ratio, above which flapping will be realized.

Running the fluid-structure direct simulations (FSDS), we obtain a systematic set
of results for select Reynolds numbers over a broad range of mass ratios. As the mass
ratio is increased, the results reveal three distinct regimes of response summarized
in figure 23. These are defined by (I) fixed-point stability, (II) limit-cycle flapping,
and (III) chaotic flapping. As µ increases above the first (flapping) critical value,
the response transitions from a stable fixed point to a travelling-wave flapping limit
cycle. This period-one limit cycle increases in amplitude with mass ratio (with a slight
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decrease in the flapping frequency), until the Strouhal number of the system reaches
the value of the natural wake frequency. As µ is increased beyond this second (chaos)
critical value, the motion undergoes a direct transition from a period-one limit cycle
to chaos. The breaking up of the limit cycle emerges as a 3/2 superharmonic of
the limit-cycle frequency (the period-doubled 1/2 subharmonic does not represent a
natural wake frequency). This chaotic motion is measured by a positive value of the
largest Lyapunov exponent, which increases with increasing mass ratio. As µ increases
further, the eventual broadband response is characterized by irregular flapping
motion with intermittent violent snapping events accompanied by large rapid changes
in tension, dynamic buckling, and shedding of strong vortices away from the wake
centreline.
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